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FOREWORD

An analytical development is described that proposes a means
for determining the extent and severity of thermal stratification of a

side wall heated container and the associated self pressurization.

The work has been done as part of a consultation and advisory
program supported by the National Aeronautics and Space Administration-
Lewis Research Center, Centaur Project Office under Order Number

C-69726.
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A Method for Analyzing Thermal Stratification and Self
Pressurization in a Fluid Container

R. W. Arnett and D. R. Millhiser

Introduction

The phenomena of thermal stratification in cryogenic liquids has
been observed for several years [Huntley, 1960; Neff, 1960; Scott, et.al.,
1960; Swim, 1960]. In recent years the importance of a better under -
standing of the causative mechanisms has been recognized and has resulted
in numerous investigations of the problem being reported in the literature
[Robbins and Rogers, 1964; Schmidt, et al., 1961; Schwind and Vliedt,
1964; Tatom, et al., 1964; Tellep and Harper, 1963].

Most of the referenced work has been oriented toward the thermally
stratified layer as it affected liquid pumping due to reduced NPSH. Only
a small amount of work is reported on the effect of thermal stratification
on ullage pressure rise in a sealed container. Tellep and Harper [1963]
have touched on this aspect but did not consider the effect of a possible
temperature gradient in the ullage gas. The presence of a sizeable
temperature change through the gas has been reported by Maxson [ 1963]

and Schridt et al., [ 1961].

Coupling of the liquid surface to the gas space in such a manner
as to allow prediction and measure the influence of condensation or vapori-
zation has proven to be a difficult task. This presentation describes
a means for predicting: (1) the extent of thermal stratification in the
liquid, (2) the temperature gradients in the ullage space, and (3) the
amount and direction of mass and energy interchange due to liquid-gas

phase transformation at the liquid-gas interface.




Boundary Layer Equations

An analytical method for predicting the volume of liquid involved
in thermal stratification and the temperature pattern existing in the
stratified layer appears to be quite complicated. Many factors appear
to influence the problem such as container geometry, heat transfer rate
and location, fluid properties, force fields, and the variation with time
of any or several of these factors. Further study and experimentation
may reveal that the importance of some of these parameters is small
or negligible, and simplified expressions may be used for satisfactory
predictions. However, for this development the effect of factors as
appear to be relevant will be retained although the development of the

equations is approximate in some areas.

Since the immediate interest is the Centaur fuei tank the general
shape of this tank is assumed, i.e., a cylindrical portion terminated at
the top by a conical nose piece and closed at the bottom with a flat end.
(See figure 1.) This latter assumption while not exact seems justifiable
since it is certain that heat transfer through the bottom will be assimi-

lated in the body of the fluid in either case.

. The general method of attack follows that of Eckert and Jackson
[ 1951] and Von Karman [ 1946] as modified for application to a cylindrical
and conical shape. The flow pattern that appears from the approach used
here is comprised of a free convection boundary layer forming adjacent
to and flowing upward along the cylindrical walls. This layer proves to
be turbulent in nature after only a short distance of travel from the tank
bottom corner (Gilixz 1011) for the Centaur conditions. Thermal energy
passing through the wall is carried by this boundary layer through the
bottom of the thermally stratified layer thus delivering the warmed fluid
to the stratified layer. Since the stratified layer is a region where a
temperature increase over the bulk temperature exists, it is quite

apparent that thermal energy is being delivered to the fluid in this layer




and this energy must come primarily from the boundary layer. If the
boundary layer, as such disappeared at the lower boundary of the
stratified layer, this would imply dumping of all the boundary layer
energy at the bottom of the stratified layer. If such occurred, it is not
apparent what mechanism would cause the distribution of this energy
throughout the stratified layer with a non-negative temperature gradient.
It seems reasonable that the boundary layer begins to lose mass as soon
as it encounters the stratified layer and thus decays throughout its
traverse of the warm layers of fluid., There is some uncertainty as to
whether a complete decay occurs or if a finite boundary layer flow still
exists at the surface causing '"radially inward'" flow to exist at the
surface. The development reported here assumes complete decay of the
boundary layer. Such a decay must be manifested by flow out from the
boundary layer as it traverses the stratified layer. This flow would be
composed of the coolest fluid in the layer namely, that fluid adjoining the
inner face of the boundary layer. In this way the warmer fluid adjoining
the wall would be delivered to the surface layers and cause the largest

temperature increase to occur there, as in fact does seem to be the case.

Development of the expressions proceeds along lines similar to
Von Karman [ 1946] and Eckert and Jackson, [ 1951] modified as required

for a conical shape (see figure 2).

Following Eckert and Jackson, [ 1951] the temperature and velocity

distribution in the boundary layer is assumed to be represented by

o =9,ﬁ—/51)7//

w-v@l-4°

and



Forces acting in the vertical direction on the element under
consideration are made identically equal to the vertical change in

momentum thru the element; Momentum change ._—_.'Z Forces (%),

The momentum through the lower plane is given by

27750:22}:0/ /f)uz( Ry )% ,

and the change in momentum in traversing the element is then

[2#@9;%/%&7/%})?]& . (1)

| Buoyant forces acting on the element are described by

A/fo;(ﬁs'/o)(ﬁ’ y)?/zéx ) (2)

directed upward. Setting

/5P = FPe

results in

vaﬂ/;e(/? VZ )%%& , (2a)

Shear forces acting along the wall amount to

—2r T, d (3)

directed downward.

The argument is made that temperature changes are small and
therefore there is little change in A2 from ﬁe and it may be assumed
that f/ﬁﬁ 2 [/ , except for arithmetic differences such as occurs in the




buoyancy term. Here this difference is taken care of by introducing

ﬂ , the volumetric coefficient of expansion.

Using the Blasius correlation for wall shear stress [ Eckert and

Drake, 1959, p. 143],

i
%, = aozzaﬁw%——g;ﬁ“ , (4)

the expression for shear force becomes

¥
—27;'/\/0.0226,002/———[]6; 7/7&,5 . (3a)

When the indicated integrations are performed on equations (1)

and (2a), they become

Zfz'n/%m“’r a%/Uzé (005232/?-0.%5396y}a¢x (1)

and
2,,,%/,/3[9”5(0./25/?——-2]¢ (2b)

Equating the sum of forces to the change in momentum,

27 Py coa®Y 2 [ U5 (005232 R - 00065396 ]%x
277/0,,;/99,,5(0/25/?———)%; (5)
~2r R (00228) 5 U* (5o c&

Simplifying
Y et £ 0.05232/?[/25(/—3%)]

2
= % gBREOS(! - )~ 00228 RU* (g3 2 )7
By combining the Reynolds analogy [ Eckert and Drake, 1959, p. 203],

relating viscous shear stress and conduction heat transfer, with the

Blasius correlation and a correction term for Pr variation due to Colburn

[ Jakob, 1949; Eckert and Drake, 1959, p. 324] it is found that



2 /
gn’? US coe 7 )E
Ow = Gozzs < BT ( / - (42

Making this substitution the identity is now

s 2—5/0,05232/?0'35(/ - ?%')/

5§£oﬁ;jﬁ/g5mr/ ( /5/?) (5a)

It is now assumed that ¢/ and & have a similar mathematical

form and are given by
m
U= C/ x s

(6)
= Cz x”

Making this substitution on the left side of the identity produces

2, 9 o emtn ; Cox"
mr;—;aw’ﬁzﬁ@@xm (/-7 ,f? /

Performing the indicated differentiation, this becomes

/ R C,(Cmtin) x" 2
oos232 ¢, 62(2'77*’7)’?7" a /;+mfn /?&75 8(2min) R mr.(ﬂ

Collecting all U and & terms on the right side of the identity,

7 / 7
759w pIs7R m,fr/ _ 4 &)_ o028V RUF
owzncvEU? 5 R 5% ca?r

t 4

and substituting for ¢ and & gives

ﬂ ﬁ-f y _’/ Srr-3m ’ 4 4
of/a.afy CAC %~ * m’r(/—éz,—g%
) < fa? (8)
=7
—00225;—“%)—7;— 2 i p




Combining expressions (7) and (8) gives
mtn -~/ x 69/? Cy(Cmtin) 76
005232C CZ(Z///*ﬂ)/? ﬁ*Z/ﬂfﬂ R ox _ZB(ZTMT B [0 %y

- jﬂfy ﬁf
0/5244 /5

¥ 5”-3'» (5b)

CZC/ mér(/-@%k&’?

—' ; 7/77’”
~0.0228 % AT I =
<one*y
For a cylindrical shape 3/‘?/5)6 = , and the middle bracketed
term on the left side disappears. For an infinite flat plate R0 ,
and the term involving x”/f\) disappears leaving an equation similar

to that developed by other investigators [ Morse, 1962].

In order that the above identity holds for all values of x in the

o

range of interest the exponents of x must be equal, thus the following

conditions must hold:

Sn-3m_ _ Im-n

9/74-3/)7 ¢ (9)
emten=/ = ~Z

Cmtn=/ =

Solution of the first set of equations leads to /7= 3 ) 7= ;5 )

which turns out to be consistent with the second set of equations. The
first set of equations would be valid for a flat vertical plate while both
the first and second must hold for a cylindrical shape. A conical shape

calls for A to be a linear function of x, and thus A= /LFC _x,é/n r

i%:-—
and ax /é/tr-

When the term involving 9/?/5’)6 is retained, a third equation
emerges which has no direct solution and is inconsistent with the first
two, i.e., Zm*n —> —oo . It appears that with the conical shape the
assumption of constant values for /7 and # may not be valid; rather
they would appear to vary with the cone half angle and perhaps with

vertical location.




Due to the complexity of obtaining a solution giving values for /7
and /7 to suit this last condition coupled with the relatively short time
element involved for the stratified layer growth in the nose cone additional
time was not spent on this phase. Thus expressions are obtained for the
boundary layer consisting of

U= Cx?

and (6a)

2
6 = Cz x7r .
Determination of the values of C, and 62 is next accomplished.

Thermal energy entering the bottom of the element under consider-

ation is given by
&
0/2"/7‘,09/0&(, (/?—,)%mr .

The reference datum used here is the initial bulk fluid condition. Change

in thermal energy through the element is then

/g‘%’[;fr,& eLu (/?y)%'mz/é’/ ) (10)

Energy entering through the wall is given as

i

ZFRZVMV . (11)

Fluid entering or leaving through the inner face of the boundary layer

enters at the datum condition and therefore has zero energy. Utilizing

the assumption /o/ﬁg >~/ , the energy equation then becomes

/—2770 /ﬁm?’;%/é’é&(ﬁ;w)%/ﬁ

= 2)7‘/?f, P

<coa ? .

(12)

Performing the integration and simplifying:

/% coa?r ji—[aow#e,,, UE 0004785 6, Uaf =4 R, U2




or

2
< 2y & Vi - S =
% con 7a¢/f-‘\>é,~y S (003663 06047553‘)/—5‘,/‘?
Substituting for 6, from equation (4b) results in

a/[ RERUS s 17 _ Sl
/3 oY ax[05yzza,o/% { wm/ (aaw am¢7a5/?/ =gt (12b)

o % 9//?%*5‘%03@@3 —ooos7s L 5)} =aR

Further substiuting for ¢/ and & from (6) produces

,(wi m+Sn
/0;0;;8 00228 V3R /J 3x {/C icE " aomesr -0o85 C, xj/ =/

Performing the differentiation:

/‘07; fﬁ/ﬁfcfﬂ—/awéi —0&9476562/72:/
00228 V3R

+ CPCE[ ocmisr ~000i55 G, "f(=2%) X" / =/

This reduces to

/ mc’gif—} Sealty xl}&// —0/306 C, 1 Fﬂj
(/ﬂf5/( )/ 0/3%62R_//

Two equations for exponential values can be obtained from this as was

(12¢)

possible with the previous equation. These are

- + -
L fj” £ -0 and UL jﬂ Z >0 (92)
The values previously obtained of f/7=7£ , 7= ‘—75 satisfy the first

equation but are obviously not a solution to the second equation which
stems from the conical shape. Because of previously mentioned

arguments this last equation was not considered further.



When the thermal energy equation is stated with the above values

for 7 and /7 inserted,the following expression results:

CIC /-me?’ x 07/? " /
= (12d)

Solving for C,

& /wzaﬁfma C//; zd’?—ozaj’sczﬁ/ (13)

Returning to the momentum equation and inserting values for /77 and

/7 , results in
7X IR 2 i
(oaszzl) C 62/,//? o - 7Cz Rl L con?r
3‘ , 7
=525 L5 f’”’j C} / £ C, Zf cont r 00225 Y2 104

Substituting for C, from (13) gives

oosz2! V* x IR / e
j+L % 25 —0818€, .
(c6628)° ¥eoey cf/ Ul z% AL —pzn¢, ;‘;—/
A%, 7’
=22.7%6 %’“ m’r/;—a%mzl-;?%g%f—am%z%/
/ 7

_ 00228 v*
7. I d
(6.6628%33C 2o | 1+ Z (ﬁj—(" —02239C, ;,i‘—

and

C/‘_ /C/oa "
2 x7
22736,ﬁ5,,,3m"r /- 0256762 /+E ———0223962/?
(14)
7x IR __ R
[540 ///Réx 0/5/562/?/'/'/2//9 155 0223962/?//

10




For ease of handling the following substitutions are made:

K, = 22736 o
/( 3/—0266762R

Ks = 540 (15)

n
K, = /+,-,Z-R§-§f—a/a/5 Cz%
Ks = 1211.9 ,
K =1+ /—,‘,’ig—f—azzwczﬁ-

K7 - 6%25 .

This now gives

" !/ </BY £ A
Cz _/(//(z/%”;f,é’;”/‘?mr/ + /7 /

Therefore,

c, = ,cf%v i 14, pfKe # (14a)
KKZ/(‘” /6' B %oy A3 Ks ,

and
— v
& _K7K4 RE oS C?/
K ko i Ky ¥ /j’gwﬁ‘/az
/M/Te// oot Jo
Thus,

eslleonns] 125 ]
G = Tkt Rt ety .

For the case of a vertical flat plate the terms K K4, Kb’ and .cox >

2’
all reduce to 1. Which then results in

/% vV /T
Cz (K/)/ ;HG / /;3 +/?-f‘ 7

11




and

- 2
5 4 73 <
- (_/97/_/ il ] lesul | A7
K/ A K/ [</3 v*/
Simplifying,

/ /
_ I \&[ < TE[K 7%
“lric) [g0 7 / /K_ Wj
125_
[M]/ //T/A *ﬁfi/
3

and finally,

Cz=a4a/aﬁ”_ ﬁz‘w +H/M (14b)
G,=57c326 / / 22442 +F}/ (13b)

or
Co = 04818 ﬁ[gw&cﬂié (14c)
C, = 57526 Tfffav*[zzwz +/‘?7—/75. (13c)

This compares closely with other investigators' results for a vertical

flat plate when evaluated for /7 =/

For the case of either a cylinder with constant finite radius or a
cone with a varying finite radius an iteration procedure can be used to

evaluate G/ and 62 . This is accomplished by assuming a value for Cz

12




(a first approximation would be from the equations for a vertical flat

plate), calculating the values for KZ' K4, and K6’

comparing with the assumed value. This procedure would need to be

evaluating Cz, and

repeated for the various values of x. As an example the constant C2
has a value of approximately 0. 35 at the liquid surface in the Centaur
LHZ tank for the conditions of 5” =002 “/Ofﬂe) P=/5akn and /f/
acceleration. For the same conditions on a vertical flat plate, C2 has
a value of approximately 0. 25. Only slight variations in the value of C2

and C1 are experienced with moderate changes in heat flux and ullage

pressure.

From the above it is possible to predict the velocity and thickness
of the free convection boundary layer at any point, using either iteration

for determining the constants or an approximation for the mean value.

Using these equationsit is seen that a different constant is deter-
mined for the cylindrical portion than for the conical portion. This
difference is partly due to the choice of measuring thickness perpendic-
ular to the tank axis while velocity is measured parallel to the tank wall.
An effect due to the sloping surface is also present regardless of the
coordinate system chosen. Because of the differences mentioned above
tion term must be applied to the boundary layer equations in
order to assure continuity of mass flow and boundary layer thickness at

the cylinder-cone transition. Using subscript # to designate conical

nose section, the expressions are written

)
En =Copx” +Fp  L<x=/[ (16)
& =Cxxt  ,0<xsL,,

13




where the subscript ( designates the cylindrical portion of the tank.
To determine the value of F2 it is necessary that the boundary layer
thickness perpendicular to the wall be the same regardless of which
equation is used at the limiting value of X = LC . Thus

/3,,,60:; 4 =<SC]
. X=lc

14

and
Con Z—c’im rtfrcor =Cy Lc; i

Therefore

C 3 C,
/L;:,C%;'/LC7“CZ”LC$=LC¥ « ‘—Cz,/.

oY

Likewise it is required that U have the same value at X = Lc .

and it is observed that

3
Gy =Cpnx™+F | [e=x =L (17)
Uc=C/chi ) O <x=/[,,
and that
[Ur = &]
X’Lc
Therefore 3
3 3
C//ILC7 +/L7 = C/c LCT .
and

f = Lc’g(c/c "C/n) ]

Boundary layer parameters of thickness and velocity can then
be stated for both the cylindrical and conical portion of the tank and still

preserve the continuity of mass flow.

14




Growth of the Stratified Layer

Thickness of the stratified layer will be designated by A . An
expression relating boundary layer flow to growth rate of the stratified

layer is given as
/ M_oa]_ 4 o4
A[‘l ot “Adat (18)

where a‘é/QZf is the volume flow rate in the boundary layer at the bottom
of the stratified layer, /45 is the cross-sectional area of the boundary
layer, and AA is the entire tank cross-sectional area at the same

location. Expressions for the above are given as

=14 &
(/az =2rk, Lgé‘dmr/am4—aoz7as/—%4/,

/46 = 277’({?4 - gd)é;:

and
/44 = 77/‘?42
Introducting these into (18) and rearranging, yields
R /-7
at AA "A5 8t/d
= 2”"?“%5“‘“" oHed — 002723 S (18a)
Q_),q 7
/IIu LII(I\A VA-— =
22U cnr
g O Het — 002723 5 /
&"5‘\( -
An explicit 1ntegra.t10n is d1ff1cu1t here since &} , & , and Ay
are or may be functions of A . However a numerical integration will

permit determination of A  as a function of time with sufficient accuracy.

15



Stratified Layer Temperature Gradient

The model employed here uses a decaying free convection boundary
layer with an initial mass flow at the stratified layer lower surface equal
to that entering from the boundary layer existing in the lower regions of

the tank (see figure 3).

Temperature and velocity distribution through the boundary layer

are assumed to be similar to those used previously for the boundary

o-e/i-@)7]
44 (&)

Bulk liquid at temperature TB is considered to be the datum

layer, i.e.,

and

condition.

The decay of the boundary layer as it traverses the stratified

layer (see figure 3) is forced by assuming the relations

= _Zz)
and @ 2 (/ A/ , (19)
- -4 o
4 =u(-5.
A development parallel to that made previously is used.

Momentum entering the element is

&
erprP(R- ‘dy cou
0/ P(R-y)ufdy cn?r
and the change in momentum is

&
Y

16




Buoyant force acting upward is

Zlf(/j -P) 2 (Ry)dy 4
=//é}/39,377m—,)9£ ,

Shear force acting downward is

—Zﬂf?fwg;m7’=“277ﬁ2'wdz‘ (3b)

(2c)

Equating 1b to the sum of 2c and 3b results in

ay 21 % <oa®r (R‘;«}wjaﬁ/c&z
= zyf@pﬁﬁ—f)@?&’ —ZrR T, dZ .

(5¢)

Evaluating integrals and dividing out constant terms,

a7 /8, U (005232 R -0006533 &) cour 7/
Efﬁé}ewl (0/25R - 3%@) - /ﬁi (2%

Substituting for &, and 7, from the Blasius correlation

and Reynold's analogy, produces

55/ 8 U (005232 R-0000839 & ) o' |

F 2 /
_ 59w R y | Q028RAVELF
= VIR - 3= &).cotty ———F—
aozzs.c/3 AUF ( 3 % & ca*r

Substituting for and &; from (19),

aﬁ{ NG '-’) [oafzym-ocwﬁg@,(/ zr)/w

*gzgff;’ (/ Z/%#O/Zﬁ’/? %@(/—f—)jml'r

_ oazzaﬁﬁa,yw(/ Z/Zﬁl
EFcoutr

17



After performing the differentiation and simplifying this becomes,

&G° Z )P Z)A IR V-4
b i1~ 5) " foasze(I-£) 5 55 +ocessa(zprzr) 1% )

g B | 2% L&y Z 7 4
—Q05232(Cptr)pb= - /- &= 0125-=5 (1 - & |<coa®r
(P )/Z Qo228 V4L ( A) 30/‘?( A)

/ 7a"
_ 00225/’52/70;1}/_;)*3“.

N coaty 4 .
This equation is exactly analogous to the one developed earlier for

the growing boundary layer, and matching values for o and / are

obtained, i. e.,

2
7

- 2 —
p=7 ,r=

This produces ; R
Zz\7
51=5A(/’Aé) ANy .

Turning now to a thermal energy balance, the thermal energy

entering the element is

&
_0/24771//0(@ +t95,)(/?—/) a,mré/ )

and the change in energy through the elment is

&
f%‘#&/o(@ * O R~y) ¢y mr%/dg , (10a)

Energy input through the heated wall is

ﬁﬂ’aﬁz ) (11a)
Lo 7

The energy flow across the inner face is dependent upon the mass
flow across this face which in turn is equal to the change in mass flow

crossing the element. Entering the lower face there is a mass flow of

&
/27’/0“1(/?‘/)/60@74 ,

18




and the change in mass flow is

&
8/ [Frucepmrilis

Energy then enters in the amount

oA
G Z/;}ilﬁfrﬂfz (R-y) o0 ngf/@% | (202)

Equating energy change to energy entering the element gives

C

———/1 L7 +.c8 ///F/OLQ(A’//MV%/&}

The energy movement across the inner face of the element is
included here since mass crossing this boundary in the stratified layer
does so at a temperature other than the bulk temperature, thus carrying

energy with it.

Simplifying this expression produces

—5—3-%’/5 uh [yl e uy-aufay éf/
= +%ﬁ5/ﬁdfﬂfc%

Evaluating integrals gives
f[o. 03663 RE, [ & —0004785 6, 4 &"
+ 016 Gy RUS —002723 Oy U 5}]

_Rge -
=t +@,&,/0/4@4/? 16, 00272’3U,5L].
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Substituting for 9”,1 from the Blasius-Reynolds analogy

correlation (equation 4a) produces

in/"; 75t _
boezb < 2 U‘/%’ O%JRU@ 06047850[’5{/

+ 2064 RO Y& —002723 UL@_Z/

Introducing values for and @ from (19) results in

i”gfmé 7 _Z)_ it _Z /72
ozg,o/gz/{éif/ow’q”& (1-£)-ocsrms s (1 Z&')/

+ fﬁ/.m REy G&(I- i)’—aozweﬂ G&( - f)?

A
72%?*9@3%/4@49”5(/-5} —002723(/@2/—5)/ .

Performing the indicated differentiations:

%, i
gw 17 *cou V/(/zXacww) ik 217 pogs 1At R
0oz28 < /3 vjz 74 4515 wAA

+ 00.%3[47/64;(/“ / _@E_/_Z Méﬁ@l(/__

+am£g&;{/—f)"’/?a #0464 14 5.6 (1 - )bﬁ

(OO 526, (1~ £)" - cormesnaf] ’Ag) £

— Rgw (a/a 1464) _Z
= s baReu (£,

+0/MZ£@9M(/ )40)/? + (/3,;202713)0543 al(/_jz)'g
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Note that the last three terms on the right side have identical terms of

the same sign on the left side, thus canceling each other and the equation

(5%6/4@4@/ 2 ~002723G 61— £) /

L VaXaawes), 48, 27 (126)
,c//cazzr 00225’,0/0 24 / / UI&‘/ 'A—)

- 0036630’5’ R +ooses gi&H- £ j;/

becomes

Rearranging results in

395[

i 3
6.85295«”/ // e 7/#045 //;2239_—4(/_ z) —/{—Z—Réég/ (12
27 .

g)

/% Vs Eacen ——9/;—0./5@//? /_ZTZ)_/

For a right circular cylinder this reduces to

6.8329¢ / écffjwé /ﬁ 2239 @(/ -A_) / (12h)
i /.

92 Y Z,)_/;"a/&z/k?(/'aé)f/

The above differential equation can be most readily solved on a

digital computer by numerical integration to obtain 9& as a function

of £ .

Ullage Space Temperature Gradient
Expressions developed previously for boundary layer growth and
stratified layer growth rate are valid in the ullage space up to the point
at which the stratified layer fully occupies the ullage space. However,

temperature gradients in the stratified layer will not be represented
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accurately by the above developed expression. The assumption of
constant wall heat flux used previously will not apply in the region where
the wall is wetted by vapor and large temperature increases may occur,
Experimental results [ Maxson, 1963] demonstrate that large temperature
increases can be realized in the ullage space. As a result of these
differences a modification of the equation developed for the liquid phase

is in order.

Temperature and velocity profiles in the boundary layer are
assumed to be of the same form as before. Decay of the boundary layer
as it traverses the stratified layer is also assumed to take the same
pattern. The momentum equation is developed as previously with identical
expressions for the constants and exponents being obtained. Setting up of
the energy equation as it pertains to the stratified layer proceeds along
parallel lines up to the point where differentiation is to be performed.

At that point, the equation is

/ ,6/02/‘// i U6, ~0apwes Uﬁ/

(21)
/4@4/?9 w06y ~002723 Gy 5//
= R” + Gy 2/ 0164 R 2
T tsf cmy | HE 1Mot R Up &y —002723@51/.
Heat transfer through the wall, 5”, , i3 now assumed to be
proportional to the temperature difference. Thus
P =n(1p -7 )= 16y , (22)

where _f) is the overall coefficient of heat transfer. Now

Qd = 94 —Q&e
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Therefore

fn/ ='n'(ed —QBZ) .

Ma.king this substitution together with the substitution for Z[e and

leads to

X}
{ 0‘225%24)‘” // 00%63 RUST) - £) —ocoues gl - £) /
/4@4 R G & (1- A)ﬁ—oozzza@,zga - A_) / /

_ /?-0-(9 6)

After performing the differentiation and collecting terms this becomes

z // 002&3464/0 A0 d(/_ _Z') OW( " i/

+G & Jomet(l - £ —-002723 ,géﬂ - 5—7)7/

380 (st cn A R
@ / [ 002286, /2 zﬂAj/ o (/A) 5 ~ooxs
roaelfBl-§']- s = 0.

Solution of this equation to obtain 9& as a functionof Z is

(21a)

accomplished by a combined iteration and numerical integration computer
program. Below the stratified layer (i.e., Z<() the vapor temperature

is that of saturated gas, i. e., %l =0 .
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Self Pressurization Computation

Having obtained, for a particular time, the temperature pattern in
the ullage space a pressure is now determined for the ullage space that
is compatible with the temperature variation and the mass present in the
ullage. To accomplish this a differential volume element described by

V= mR*4dY
is used.

Note that the variable {ﬂ introduced here is a variable over the
entire height of the ullage space (including the above named Z ) regard-
less of whether the ullage stratified layer has occupied the entire height
(figure 1).

The mass contained in this element is then given by

AN = PR Y

M = %R%% |

/2 is a function of the local temperature and pressure which is

and the total mass by

symbolized as

P =0(6,,R)
while A is a function of f/ and is given by
R =Rs—FPlonr
Since the previous determination gave 65.8 as a function of Z , and
therefore of jﬁ , where / includes the region below the stratified layer

as well as the layer where a temperature gradient exists ( O<zZz<A ),

the total mass may be determined from

A 2
= 1) R R Von 7 [ L8

(23a)

24




where a combined iteration and numerical integration procedure is again
used. The expression is numerically integrated using various assumed
pressures until the computed mass compares with the known mass from
initial conditions or previous steps. The pressure obtained from this
procedure has a matching saturation temperature which is compared with
the liquid surface temperature obtained from the thermal analysis of the
stratified liquid layer. If a satisfactory match is not made, then vapor-
ization of liquid or condensation of gas is permitted to bring the liquid

surface temperature into equilibrium with the computed pressure.

Vaporization will occur if the liquid surface temperature obtained
from (11) exceeds the saturation temperature determined above. A
liquid surface layer of thickness Z, at a constant temperature equal to
the saturation temperature is assumed as shown in figure 4a. Thermal
energy proportional to the shaded area is removed from the liquid by
vaporization and the mass of liquid vaporized computed from

£
DM, = Z’—: L5 /(G E5) R4z, | (24)
[

When the liquid surface temperature is less than saturation tempera-
ture condensation is allowed until the liquid temperature is raised to the
saturation point. The temperature pattern assumed is shown in figure 4b.
An error function expression [ Schmidt, et al., 1961] is assumed to
represent the temperature variation as though the surface temperature had

experienced a step change in temperature from TB to TS. The equation

G5 — 6 2 A%

GG - 2 [ AN 25

co. 2T »
(o

is given as
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Z
where ¢ = 2—\/(_1—__—/5 and Z is taken as the time interval used in

(18a). An iteration procedure is used to determine a Z/ where the 9&
matches the 9& from (12g). Equation (24) is again used to determine
the mass transport, however, the term ( 951 "95 } will now be

max

negative signifying removal of mass from the ullage space.

Use of Equations
Combining of the above developed equations to provide a quantitative
solution for a tank self pressurization problem proceeds as outlined be-

low.

The depth of the stratified layer, A, is determined from (18a).
A numerical integration of (18a) is made using a selected depth increment,
DA, to determine the corresponding time increment, Dt. A tabulation or

graph of [DA ver sus[Dt suffices to establish the variation of A with t.

In order to accomplish the above integration certain preliminary
determinations must be made. UA and 61] may be computed from (6)
using the values of m = 3/7, n = 5/7 and (13a) and (14a) to determine the
constants. Changes in tank shape or heat transfer with height may be
taken care of by repetitive use of equations such as (16) and (17). RA
as well as Z]A and 5&1 , must be evaluated at the bottom of the stratified

layer.

Once the vertical growth with time of the stratified layer is obtained
the temperature gradient within the stratified layer may be determined
using (12g). Again the terms (]A , 6A , and /?A are evaluated at the
bottom of the stratified layer.

In all of the above calculations the fluid properties are calculated

at bulk liquid conditions,
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Parallel calculations to establish stratified layer depth as a function
of time and the temperature gradient in the ullage space must be accomp-
lished at this point. An identical procedure to that described for the
liquid phase is used to establish stratified layer depth with fluid properties
evaluated at saturated gas conditions. Equations (6), (13a), (14a), and
(18a) are used for this determination. The temperature gradient through
fhe gas stratified layer is computed by a combined numerical integration

and iteration solution of (21a).

Having established a temperature pattern in the ullage space, an
iteration procedure is used to establish the ullage space pressure from
(23a). The mass calculated from (23a) is forced to be equal to the initial
mass in the ullage volume by an iterative adjustment of pressure.
Temperature below the stratified layer in the ullage is assumed to be that
of saturation. The saturation temperature corresponding to the above
determined pressure is then compared with the liquid surface temperature
determined previously. Mass interchange is determined for either con-
densation or vaporization and the mass vaporized determined from (24)
is algebrically added to the ullage mass present at the start of the time

interval. This new mass is now used for the next time interval.

Repetitive application of the above procedure for successive time
increments will enable a determination of ullage pressure as a function
of time. In the interface calculations the temperature profile in the
liquid and the pressure in the ullage space must be determined for

identical times.

Boundary layer behavior and temperature gradient in the ullage
space must be computed from the beginning for each time increment due
to the change in fluid properties which may occur as a result of pressure

and temperature differences,
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Figure 1. Assumed Geometry
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Figure 2. Element Considered For Boundary Layer Growth
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Figure 3. Element Considered For Boundary Layer Deca
cay
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A

Nomenclature

cross section area

C, ) Cz, F) 7,1, /'}/»a ~ derived constants

~

N WOENNRN R SI®RANDDLIN POUIDDT AN RPN

1

specific heat

14
modified Grashof number, = éé@L
Y/

acceleration

vapor space height

substitutional term

thermal conductivity

liquid depth

length of cylindrical tank

mass

pressure

Prandtl number

unit area heat flux

tank radius

cylinder radius

radius at the liquid surface
absolute temperature

time

local velocity in boundary layer
equivalent free stream velocity
volume

vertical distance in tank
horizontal distance from tank wall
vertical distance from bottom of stratified layer
liquid diffusivity

volumetric coefficient of thermal expansion

half angle of conical nose
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Nomenclature ( continued)

stratified layer thickness
boundary layer thickness
error function variable

temperature difference, T - T

B
- Tp
T - 7T
72 -78
Tw= T8
-T2
% -7a

dynamic viscosity

kinematic viscosity

fluid mass density

viscous shear stress

vertical distance in ullage space

overall tank wall heat transfer coefficient

Subscripts

ambient conditions (external to tank)
at bulk fluid condition

in the cylindrical portion

in stratified layer

in the conical nose

in the ullage space

at tank wall

saturated conditions

at bottom of stratified layer

pertaining to boundary layer
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Appendix A
Evaluation of Integrals

1. In the development of the preceding equations several integrals need
to be evaluated. Following are the detailed integral evaluations.

Each integral evaluated involves the term y/0. For ease in
handling the integrals the substitution y/® = a was used. Thus 6a =y,
and dda = dy. To establish limits it is observed that wheny = 0, a = o;
wheny =60, aol,

In all of the integrals the relations
8 ___ew[l _(%)l/"j\: ew(l -a1/7>,

and

Ual/v (1 - a.)4

eo (P (-0

are used.

2, Evaluation of integrals.

6 1
(2) fo @ dy = L su? 227 (1 - a)®da

1
6U2‘[ a2/7(1 -a.)sda-
o
1
= éUaf I:aa /7 8217 | 282117 5627 4 702217 - 56a%"/"
]

; 28a44/7 _8a51/7 1558 /7] da

36




(b)

b 9/ i 16 /7 58 23 /7 56 so /7 70 ar /7
J, oy = ou ”’[ -3 *t3;* 3 et
1
14 aa /7 58 s1l7 4 ss [7 ) 65/7]
72 +ET2 52 752 0
1 28 70 28 1 28 14 4
= 8U° C_ 28 ) ( _>
Um[ 5 *z3 37 "5 1 729

5UZ(7) (3. 7847985 -3. 7773250) = 0. 052315 & U°,

5 1
~n n - y

520%a° /(1 - a)° da = 6%U° JF 271 - a)da
o

]

[as /7 _gal® /7+ Zsazs/v _56 30/7+ 7Oa37/7 -56a.44/7

. 2.8a51/7 _8a58/'7+ 455 /7 :\ da.

- . 18l7 2alv a0 /7 a7 /v aa/
i 14 5 a7
62U2(7)trga -s57a +—a --ia. +3—5a.

[ 4]
wlco
[

37 22

--Ta +==—a -——a + =

56 s1/v ss /7 8 65 /7 lavz/'r 1
51 29 65 72

[¢]

1]

62U27[ 114 35 , 14 < ,56 56 8
(7 (1 1 ) 72) 23 t37 ﬁ+€§>

3
62U (7) (3.08338993-3.08245574) = 0.0065393 62 U=,
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o 1 .
(C) Io edy =‘[°69w(1 -a1/7)da:(sewj\ (1 _a1/7)da

u
on
@
x
o |
o
¥
|~
)
®
~
)
—_
-
1
o
D
=
—
fom—y
1
00|~

o) 1 .
(d) L by dy =_[ 8%8, a(l - a1/7)da _ o%e, jo a(l - al/7)da

2 15/7 1
=5ze"[la T ] . L
- — =6°0 ~ . >_ 1 .2
2% "15 0 w<2 15 )= 35 58

6 1
(e) foeudy:J qu6a1/7 (1_a)4(1_al/7)da

a /7(1 -a)* (1 - al/v)da.

1
l: 1/ _2 7 4,817 +4a9/7 +6a15/7 _6a16/7 4@ 7

1422/ +a29/7 -a_3°/'7 ]da

16 /7 22/7 _6_23/7
112 33

/7 /7 15/
1 °® 1 4 7
= 0,U8(7) [ga ta - iia %a
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8,U 8(7) (0.8088384 -0. 8036054)

0.036631 6,U 6.

5 1
() Leuy dy‘:L 6,U &% a° /7(1 -al/7) (1 -a)* da

1
= ewuazf a8/7(1 -a1/7) (1 -a)*da

o

1

ewuazf

o

+

[aa /7 _a9/7 _4a15/'7 4a18/7+6a22 /7 _6a23/7_4a29/7

+4a30 /'7 +a36/'7 _a37/7}da‘

5 U2 1 1s5/7 1 16 /7 > zz2/7 4 23/ 6 29/7 ] 3o/
W (7) Ea -R-a -Ha +§a +'2—9a -ga

o]

1 ae /7 4 a7 /7 _1—43/7 1 44/7]1



&
_[ Buy dy = 6,U62(7) (0.57884018 - 0. 57815656)
o

= 0.0047853 6, U 6%,

1
(g) Jéudy=j15Ua1/7(l -a)*da = 5Uj al/7(1 -a)*da

.
= GUI [al I -4a° /7+6a15/7 -42%* /7+a39/7 ]da
]

5 T1 8/'7 4 15/7 3 22/7 4 89/7 1 36/'7 1
U(7) l:§a -Ea +Ha —Ea +£a ]

(o)

oo [ (5o + 55 )-(5 4 35 )|

8 U(7) (0.42550505 - 0. 40459770)

0.14635 6 U.
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(h)

o

1 1
j uy dy=f 521 a® /7 (1 -a)*da:ézuf a3/7 (1 -a)*da
o o o

1
- GEU,L- [a8/7 _4a15/7 +6a22/7 _4a29/7 +aas/7j]d

] as/7 1
-~—a +=—a -=a +-—a )
15 11 29 9 ]o

52U(7) (0. 29681903 - 0.29292929)= 0.027228 62 U.
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Appendix B

Use of (6a) to calculate boundary layer thickness requires use of
(13a) and (14a) to determine values for Ci and Cz. Where varying
conditions exist along the vertical height of the vessel, the values of
C: and Cz may also change. If the vertical height is divided into
increments and the divisions between these increments designated as
X1, X2, °'* Xu, then an adjustment can be made to assure continuity of

boundary layer thickness and velocity.

Handling of the expressions will be simplified by setting

C: =G,
and

Cz = Cy -
Then in general

U :CuXa/v
and

5= C.X° /7

5
Now
U= Cuox®’7, 0sxs .
Let
U =Cy X3/7 + Ful |, X1SXSXa2 .
Then
Coox1®!7 = Car %2277 + Fur, and Fup = Cu1 X137 %—; - 1).
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Cu1X23

Also

U=Cu2X3/7 t+ Fyz , X2sX=Xsa.

Therefore

/ / _ al7 (Cur _ )
7 4 Fu1 = Cuz2 X23 7, Fus and Fui2 = Cuyz X2 ———-C“2 1)+ Fya

Generally then

U = Cun X3/7 + Fya, XDSXSXn+1

where

F - 3/7 (Cu\n—li
un Cun Xn -.—“_Cun - 1)+Fu\n -1).

Likewise for boundary layer thickness the general expression becomes

5/7

6= CénX +F6n’ XnSX<Xn+1

where

s /7 Cotn -1
5“=C§“X“ -—6;'_"‘1>+F6\n-ll-

F

The above procedure may be used where changes in wall heat
transfer or inclination of the surface can be approximated by step

changes in values.
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